Blog Categories

Speaker Off Axis: Dispersion Specifications and Off Axis Response Plots

This will be a quick article that explains how to interpret manufacturer published speaker dispersion specifications and in particular how these relate to what you might see on an off axis response plot.

The Importance of Speaker Dispersion

To properly position speakers in a home theater, you must understand speaker dispersion. An important goal in any home theater is to provide even SPL coverage of all seats. To do this you need to understand the effect of listening angle on SPL.

You must also understand speaker off axis response to properly design the acoustic treatment for a room. A wide dispersion speaker that puts a lot of energy into the early and late reflected field will need a very different acoustic design than a narrow dispersion speaker.

Speaker Off Axis Response Plots

Speaker Off Axis

The graphic above shows the frequency response for a wide dispersion cone/dome speaker. We’ve taken measurements at angles from 0 degrees (on axis) to 90 degrees (mic sideways on to the baffle). You can see that the SPL at different frequencies (the frequency response) changes shape as you measure at different off axis angles.

It’s pretty easy to read these charts for the purpose of examining speaker dispersion. You simply calculate the difference between the plots at two off axis angles. Many acoustic measurement tools have arithmetic functions that allow you to normalize data. You can then see how similar the on axis sound is to the off axis sound, and how much it is down at certain frequencies.

For example the plot below shows the magnitude of the difference between the 45 degree off axis plot and the on axis plot. The on axis plot has been normalized to 0dB.


In this particular case you can see that the speaker has wide dispersion, and that the response on axis and 45 degrees off axis keep within a 3dB window through 6kHz or so.

Understanding Dispersion Specifications

Many pro-audio manufacturers publish dispersion specifications. These are commonly quoted as xx degrees. For example: “90 degrees”.

Correctly, these dispersion figures should be qualified by both the frequency and dB difference from the on axis SPL. For example: “90 degrees -3dB @ 1kHz”. That would mean that at 1kHz the speaker covers an angle of 90 degrees with a nominal difference from the on axis SPL of 3dB. For what it’s worth, the accepted pro-audio “standard” is to quote dispersion figures at -6dB and 1kHz.

One important thing to understand is what the angular coverage refers to. This is a source of potential confusion for those reading and interpreting specifications.


A dispersion figure of 90 degrees means 45 degrees either side of “on axis”. Likewise a dispersion figure of 80 degrees would mean 40 degrees either side of “on axis”.  So if you saw a published specification of 90 degrees with no frequency or dB qualifier, you’d assume this means that if you measured the speaker at 45 degrees off axis you’d see that at 1kHz the response is -6dB down.

At Acoustic Frontiers we don’t think this is a very useful standard for home theater design or acoustic design for two reasons. We think -3dB at 4kHz is a better specification for our purposes:

  • Firstly, -6dB is a very significant perceptual change in SPL. We prefer -3dB, which is around a 20% perceived loudness difference.
  • Secondly, 1kHz is not a high enough frequency to cover the main energy output of popular musical instruments or the key frequencies that contribute to localization. 4kHz is a better frequency for this purpose.

The other important way you’ll see dispersion specifications like “90×45” or “80×60”. There are two dispersion figures here, the first is accepted to be the horizontal / lateral dispersion and the second the vertical. So we’d interpret “90×60” to mean that the speaker is -6dB down at 45 degrees laterally off axis at 1kHz and also -6dB down at 30 degrees vertically off axis at 1kHz.


3 thoughts on “Speaker Off Axis: Dispersion Specifications and Off Axis Response Plots”

  1. Good evening…
    I’ve got to wonder what in the world is wrong with me??!! I just do not understand what you are talking about regarding “degrees of dispersion.” I know I’m not stupid but I just can’t get it. “90×45” or “80×60” ? Off axis? On axis? Maybe I’m just two old… although I was NEVER good at math except for basic stuff. I ran a multi million $$$ business successfully (General Motors Dealerships) but all I had to know how to do is add, subtract, divide, multiply etc. I did not take high math in high school, and I only took business classes in college. Maybe it’s my age; 73. Regardless I love music and enjoy my various should systems so I really wish I could figure this stuff out so I can convert my home theater to to an ATMOS .4. correctly. Maybe I’m dreaming but I’ll keep reading and who knows, maybe a light bulb will eliminate eventually! Maybe I should find a 9 or 10 year old kid to explain it to me…. but in the meantime I guess I’ll just install 4 speakers in the ceiling, upgrade my Onkyo 5.1 receiver to a 9 channel .4 and see what it sounds like. The new Onkyo flagship looks pretty nice according to a recent A/V magazine I subscribe to.

    Again… have a great Thanksgiving! (I wrote you earlier on another one of your sites! Jerry Slonsky

  2. Speaker A.
    Sensitivity 92db
    400 watts
    Vertical Dispersion is 30%
    Horizontal Dispersion 80%
    Speaker B.
    Sensitivity 94db
    300 watts
    Vertical Dispersion 80%
    Horizontal Dispersion %80
    My listening room 16″x10″
    which one should buy?

    1. They are both likely good choices – dispersion is one factor, but other factors are ability to reach desired SPL, sound quality, form factor and cost.

Leave a Reply

Your email address will not be published. Required fields are marked *